

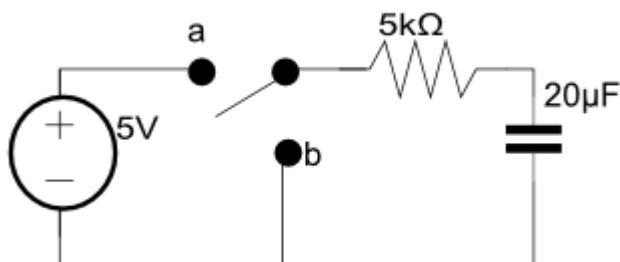
---

# MT240\_NR\_9\_1\_1 Sinusoid Source

## Table of Contents

|                          |   |
|--------------------------|---|
| Title .....              | 1 |
| Description .....        | 1 |
| Exercise .....           | 2 |
| Questions .....          | 2 |
| Useful Information ..... | 2 |
| Provided Code .....      | 2 |
| Solution .....           | 3 |

## Title


Last Updated 2/27/2016

## Description

An AC voltage source can be modeled by a DC source toggling on it and off via a switch.

You have a circuit as described in the image below. The switch toggles between position a and b. At  $t = 0$  there is no energy stored in the capacitor and the switch is in position a. At  $t = 2\tau$  (tau is the time constant of the circuit) the switch moves to position b and so on. The table below indicates the time the switch moves and into which position.

| time          | position |                    |
|---------------|----------|--------------------|
| $t = 0$       | a        |                    |
| $t = 2\tau$   | b        |                    |
| $t = 2\tau$   | a        |                    |
| $t = 4\tau$   | b        |                    |
| $t = \tau/4$  | a        |                    |
| $t = 4\tau$   | b        |                    |
| $t = \tau/6$  | a        |                    |
| $t = 2\tau$   | b        |                    |
| $t = \tau/10$ | a        |                    |
| $t = 4\tau$   | end      | End the simulation |



## Exercise

1. Calculate the voltage across the capacitor as a function of time
2. Plot the voltage as a function of time with time being in ms

## Questions

1. How would you create a waveform that closely approximates a triangle?
2. Approximate how fast must the switch toggle between position a and b in order for the waveform to approximate a triangle?

## Useful Information

### General Solution for a RC circuit

$$x(t) = x_f - (x_f - x_i)e^{(-t/\tau)}$$

$x_i$  refers to the initial amount. In this exercise,  $x_i$  refers to the voltage across the capacitor right before the switch changes position.  $x_f$  refers to the final amount. In this exercise,  $x_f$  refers to the voltage that the capacitor will have provided that no future switch event occurs. For example, when the switch is in position a  $x_f$  is 5V, and when the switch is in position b  $x_f$  is 0V.

## Provided Code

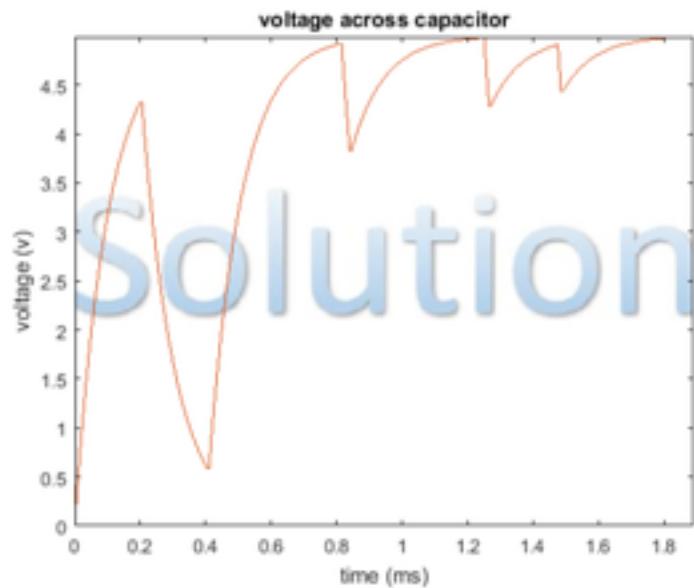
```
% Parameters
R = 5000; % Ohms
C = 20e-6; % 20uF
tau = (R*C); % Time constant, s
Vs = 5; % Voltage source, s
Vi = 0; % Voltage across capacitor when the switch changes
Vt = []; % Stores the voltage as a function of time
Vf = Vs; % The final voltage.
time_beg = 0;
time_step = 0.005; % Time step, s

x = 9; % number of cycles (switch on and off)
counter = 0; % counts the number of cycles

% The while loop iterates through every switch event.
% During every switch event, a new time array is
% calculated. Notice how the time array starts
% over at 0 whenever a switch even occurs and its
% duration is the time duration of every switch event.
while counter < x
    % the capacitor is charging at first
```

```
if counter ==0 % switch event to charge
    t = time_beg:time_step:2*tau;
    Vf = Vs;
elseif counter ==1 % switch event to discharge
    t = time_beg:time_step:2*tau;
    Vf = 0;
elseif counter ==2 % switch event to charge
    t = time_beg:time_step:4*tau;
    Vf = Vs;
elseif counter == 3 % switch event to discharge
    t = time_beg:time_step:tau/4;
    Vf = 0;
elseif counter == 4 % switch event to charge
    t = time_beg:time_step:4*tau;
    Vf = Vs;
elseif counter == 5 % switch event to discharge
    t = time_beg:time_step:tau/6;
    Vf = 0;
elseif counter == 6 % switch event to charge
    t = time_beg:time_step:2*tau;
    Vf = Vs;
elseif counter == 7 % switch event to discharge
    t = time_beg:time_step:tau/10;
    Vf = 0;
elseif counter == 8 % switch event to charge
    t = time_beg:time_step:4*tau;
    Vf = Vs;
end

% V(t) = Vf - (Vf-Vc)exp(-t/tau)


% Vt is concatenated every iteration adding onto its old values.
Vt = [Vt, % INSERT CODE HERE];
Vi = Vt( % INSERT CODE HERE);
counter = counter + 1; % increments the counter
end

%t = time_beg:time_step:(1111*tau/60)+time_step*8;

figure(1);
plot(t,Vt);
xlabel('time (ms)');
ylabel('voltage (v)');
title('voltage across capacitor');
axis([0 max(t) 0 max(Vt)]); % adjusting the axis
```

## Solution

Parameters



*Published with MATLAB® R2015a*