
MT240_NR_5_3_1

Inverting Op Amp Function

Table of Contents

Title	1
Description	1
Exercise	1
Useful Information	2
Provided Code	3
Solution	3

Title

Last Updated 2/6/2016

Description

This function is used in conjunction with with MATLAB Problem mt240_nr_5_3_1_inverting_op_amp.

The function takes in the parameters: Vin, Rf, Rs, Vpos, Vneg and returns Vout.

- Vin is the input voltage signal in volts. It can be a single value or an array of values.
- Rf is the feedback in ohms. It can be a single value or an array of values.
- Rs is the source resistance, Ohms.
- Vpos is the positive voltage rail, V
- Vneg is the negative voltage rail, V
- Vout is the output voltage of the inverting operational amplifier. It can assume one value, an array of values as a function of time or feedback resistance, Rf, or a matrix as a function of both time and feedback resistance, Rf.

Exercise

1. Create a function file named Inverting_OpAmp that takes in the values Vin, Rf, Rs, Vpos, and Vneg and returns Vout.
2. Calculate the gain of the op-amp. If Rf is an array, the gain will be an array whose values are a function of Rf.
3. Calculate Vout ignoring clipping due to the rails.
4. Use logical expressions to clip Vout at the rails instead of using a nested for-loop. Remember that your function must be able to compute Vout when both Rf and Vin are arrays of different length.

Useful Information

The objective is to calculate V_{out} as a function of V_{in} , R_f , R_s when V_{in} and R_f can be arrays of different values. A for-loop could be used to calculate V_{out} , but for-loops are messy and slow compared to other methods. A better method is to use matrix multiplication. The process is outlined below.

The calculation of V_{out} will be broken down into three parts.

Gain

The gain of an inverting op_amp has the relationship

$$G = -R_f/R_s$$

This relationship holds true even if R_f is an array representing a spectrum of resistances.

For example, if R_f is a 1×5 matrix and ranges from 1 to 5 with steps of 1 Ohm, and R_s has the value of 1 Ohm then the Gain would be a 1×5 matrix of the form

$$R_f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \end{pmatrix}$$

$$R_s = 1$$

$$G = \begin{pmatrix} -1 & -2 & -3 & -4 & -5 \end{pmatrix}$$

Gain*Vin

V_{out} is the product of the gain and the input voltage.

$$V_{out} = G * V_{in}$$

This process is straightforward unless the gain and the input voltage are both arrays of different length. The solution is matrix multiplication. This will be demonstrated using the same gain calculated above and letting V_{in} 1×4 matrix with values

$$V_{in} = \begin{pmatrix} 1 & -2 & 3 & -4 \end{pmatrix}$$

Each element in V_{in} needs to be multiplied by each element of G . To do this, multiply the transpose of G by V_{in} . This will change G from a 1×5 matrix to a 5×1 matrix. Thus V_{out} will be a 5×4 matrix. Each row will represent a different gain, and each column will represent a different input voltage.

$$V_{out} = G^T V_{in}$$

$$V_{out} = \begin{pmatrix} -1 \\ -2 \\ -3 \\ -4 \\ -5 \end{pmatrix} \begin{pmatrix} 1 & -2 & 3 & -4 \end{pmatrix}$$

$$V_{out} = \begin{pmatrix} -1 & 2 & -3 & 4 \\ -2 & 4 & -6 & 8 \\ -3 & 6 & -9 & 12 \\ -4 & 8 & -12 & 16 \\ -5 & 10 & -15 & 20 \end{pmatrix}$$

Clipping

V_{out} has been calculated without taking into account clipping. To take into account clipping use logical expressions. This is demonstrated below.

$$V_{out}(V_{out} < V_{neg}) = V_{neg}$$

This logical expression goes through every value of V_{out} , and if the value is less than the negative rail, V_{neg} , that value will be assigned the value of the rail. For example, assume that the op-amp's rails are at $\pm 14V$. Applying the logical expression demonstrated above for both the positive and negative rails on the previously calculated V_{out} . V_{out} would become

$$V_{out} = \begin{pmatrix} -1 & 2 & -3 & 4 \\ -2 & 4 & -6 & 8 \\ -3 & 6 & -9 & 12 \\ -4 & 8 & -12 & 14 \\ -5 & 10 & -14 & 14 \end{pmatrix}$$

Note that three values changed.

Provided Code

```
function [Vout] = Inverting_OpAmp(Vin, Rf, Rs, Vpos, Vneg)

G = % INSERT CODE HERE % Calculate Gain
Vout = % INSERT CODE HERE % Calculate Vout, V
Vout(Vout < Vneg) = % INSERT CODE HERE; % Clip Vout at the negative
    rail.
Vout(Vout > Vpos) = % INSERT CODE HERE; % Clip Vout at the positive
    rail.
```

Solution

Published with MATLAB® R2015a