
MT240_NR_5_3_1 Inverting Op-Amp

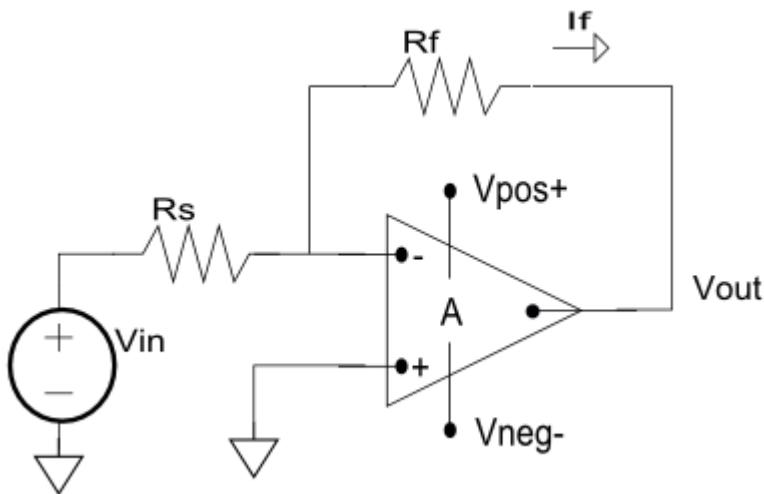
Table of Contents

Title	1
Description	1
Exercise	2
Questions	2
Useful Information	2
Provided Code	3
Solution	4

Title

Last Updated 2/5/2016

Description


This script is used in conjunction with MATLAB Problem mt240_nr_5_3_1_inverting_op_amp_function. Exercise 1 on the assignment will have the you complete this problem.

Operational Amplifiers (Op-Amps) can amplify a signal so that the signal's magnitude is equal to the magnitude of the op-amp's rails. For example, consider an inverting op-amp with a gain of -10 and voltage rails at $\pm 10V$. If the signal $x = \cos(2\pi t)$ was passed through the op-amp, the rails would prevent the output from reaching a magnitude of $30V$. Instead, the rails would limit the signal at a magnitude of $10V$ and the output would resemble a square wave.

You have been given the op-amp as shown in the image below. The different components of the op-amp have the following values.

```
Rs = 1e3 Ohms
Rf = 1e3:1e3:6e3 Ohms
Vpos = 20 V
Vneg = -20 V
Vin = 5*cos(200*pi*t) V
```

R_f is a potentiometer that can assumes the values 1k Ohms to 6k Ohms with a step size of 1k Ohms.

Exercise

1. Write a function file that simulates the inverting op-amp and takes in the parameters R_s , R_f , V_{pos} , V_{neg} , and V_{in} . Ensure that the function takes into account clipping. This means that the output voltage must be within the rails, $V_{neg} \leq V_{out} \leq V_{pos}$. The function needs to be able to handle the cases when V_{in} and R_f are arrays. Refer to MATLAB Problem [mt240_nr_5_3_1_inverting_op_amp_function](#) to complete exercise 1.
2. Use the function created in part 1 to calculate V_{out} as a function of R_f and time (from $t = 0s$ to $2T$, T is the period of the signal, and a time step of $10\mu s$). Then plot it using a mesh plot.
3. Change the input signal to DC 5V and R_f to range from 1k Ohms to 5k Ohms with a step of 100 Ohms. Calculate V_{out} as a function of R_f .
4. Using the output voltage calculated in the previous step, calculate the feedback current I_f as a function of R_f . Be sure to capture the behavior of I_f in the linear and non-linear region.
5. Plot I_f as a function of R_f .

Here is a link to the assignment [mt240_nr_5_3_1_inverting_op_amp_function](#).

Questions

1. By analysing the first figure, approximate the value of R_f that causes the output signal to clip?
2. By analysing the second figure, approximate the value of R_f when I_f begins to enter the non-linear region (begins to decrease). Why does I_f begin to decrease?

Useful Information

Assignment [mt240_nr_5_3_1_inverting_op_amp](#) takes you through creating the function. This section will walk you through using the mesh plot command.

mesh

This plot creates a 3-D mesh surface. The inputs to the mesh command are X, Y, Z, and C.

- X is an array of data points that sets the x plane
- Y is an array of data points that sets the y plane
- Z is a matrix whose values can be a function of X and Y where every value of X was evaluated with every value of Y and vice-versa.
- C is the color scaling. In this assignment you will not use this parameter.

The syntax is

```
mesh(X,Y,Z)
```

In this assignment * Let Z be Vout whose values are a function of Vin and Rf. * Let Y be Rf * Let X be t instead of Vin in order to visually see how Vout changes with time instead of Vin. This works since Vin is a function of time, t.

Using the above substitutions, the command can be written as

```
mesh(t,Rf,Vout)
```

Provided Code

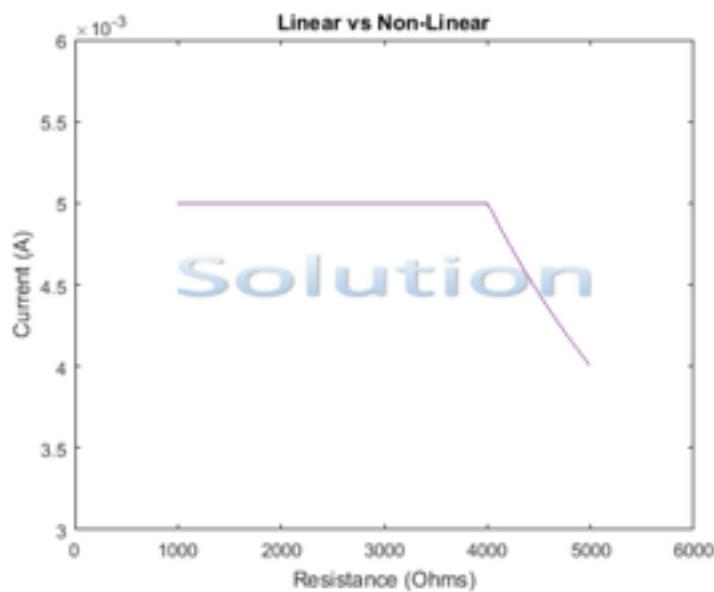
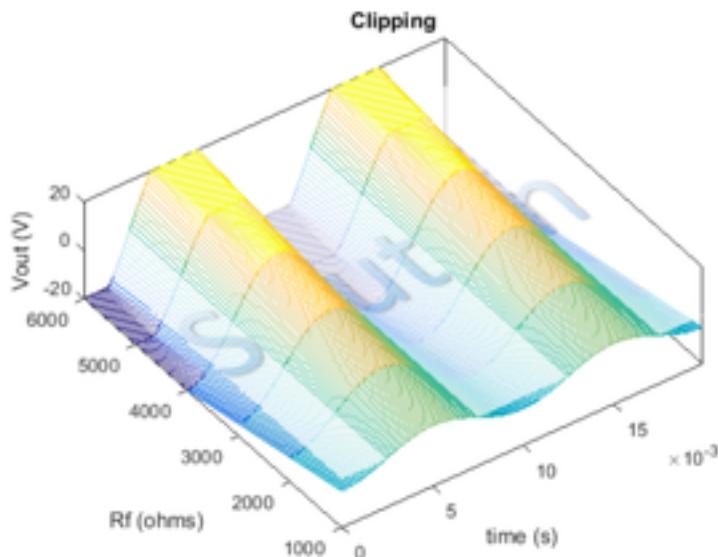
```
% Part 1
% For part 1 complete the assignment
% mt240_nr_5_3_1_inverting_op_amp_function

% Part 2
% Parameters
Vpos = 20; % Positive rail, Volts
Vneg = -20; % Negative rail, Volts
Rs = 1e3; % Source resistance, Ohms
Rf = 1e3:1e3:6e3; % Feedback resistance, Ohms
w = 200*pi; % Frequency of the signal, rads/s
T = 2*pi/w; % Period of the signal, s
t = 0:.0001: 2*T-.0001; % Time array, s
Vin = 5*cos(w*t); % Input signal Vin, V

% Call function to calculate Vout
[Vout] = Inverting_OpAmp(Vin, Rf, Rs, Vpos, Vneg);

% Plot
figure(1);
mesh(% INSERT CODE HERE);
xlabel('time (s)');
ylabel('Rf (ohms)');
zlabel('Vout (V)');
title('Clipping');

% Part 3
% Parameters
Vin = 5; % Input signal Vin, V
Rs = 1e3; % Source resistance, Ohms
Rf = 1e3:100:5e3; % Feedback resistance, Ohms



% Call function to calculate Vout
```

```
[Vout] =Inverting_OpAmp(Vin, Rf, Rs, Vpos, Vneg);

% Part 4)
If = % INSERT CODE HERE; % Calculate If, Amps

% Part 5)
% Plot figure
figure(2);
plot(Rf, If);
xlabel('Resistance (Ohms)');
ylabel('Current (A)');
title('Linear vs Non-Linear');
axis([0 6e3 0.003 0.006]);
```

Solution

Published with MATLAB® R2015a