User Tools

Site Tools


ecen_370_assignments

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
ecen_370_assignments [2015/06/23 11:55]
perry
ecen_370_assignments [2015/12/30 22:45] (current)
nielson
Line 11: Line 11:
 | [[ecen_370_assignments#​Homework 4|HW 4]]    | Joint PMF, Marginal PMF, Expectation,​ Baye's Rule                                   ​| ​  ​[[matlab_guide#​Matrix Operations| Matrix Operations]], ​ [[matlab_guide#​Plotting commands| Plotting commands]] ​                                                                           | 2.4-2.6 ​       | | [[ecen_370_assignments#​Homework 4|HW 4]]    | Joint PMF, Marginal PMF, Expectation,​ Baye's Rule                                   ​| ​  ​[[matlab_guide#​Matrix Operations| Matrix Operations]], ​ [[matlab_guide#​Plotting commands| Plotting commands]] ​                                                                           | 2.4-2.6 ​       |
 | [[ecen_370_assignments#​Homework 5|HW 5]]    | Joint PMF, Expectation ​               |   ​[[matlab_guide#​Matlab If-statement| If-statement]],​ [[matlab_guide#​For-loop| For-loop]] ​                                   | 2.7-3.1 ​  | | [[ecen_370_assignments#​Homework 5|HW 5]]    | Joint PMF, Expectation ​               |   ​[[matlab_guide#​Matlab If-statement| If-statement]],​ [[matlab_guide#​For-loop| For-loop]] ​                                   | 2.7-3.1 ​  |
-| [[ecen_370_assignments#​Homework 6|HW 6]]    | Finish op-amps BJT model                  ​| ​  [[matlab_guide#​Function Files| Functions continued]] ​                                                                      | 3.1-3.3 ​   | +| [[ecen_370_assignments#​Homework 6|HW 6]]    | Uniform RV, PDF, Exponential RV                  ​| ​  Review ​                                                                      | 3.1-3.3 ​   | 
-| [[ecen_370_assignments#​Homework 7|HW 7]]    | Inductor/ Capacitor & combo               |   [[matlab_guide#​For-loop| Perform an Integral using a for-loop]] ​                                                           ​| 3.4-3.5 ​            ​| ​  +| [[ecen_370_assignments#​Homework 7|HW 7]]    | Marginal PDF, Conditional PDF, Expectation ​           ​|   Review ​                                                          | 3.4-3.5 ​            ​| ​  
-| [[ecen_370_assignments#​Homework 8|HW 8]]    | Nat/Step response of RL/RC                ​| ​   Review ​                                                                                                                   | 3.6-4.1 ​            | +| [[ecen_370_assignments#​Homework 8|HW 8]]    |PDF, CDF, Poisson RV                ​| ​   Review ​                                                                                                                   | 3.6-4.1 ​            | 
-| [[ecen_370_assignments#​Homework 9|HW 9]]    | Nat/Step of Par RLC                       |   ​[[matlab_guide#​RootsPolynomial Roots]],                                                                                  ​| 4.1-5.2 ​             | +| [[ecen_370_assignments#​Homework 9|HW 9]]    | N/A                      ​|   ​[[matlab_guide#​Real and Imaginary CommandCorrelation]]                                                     ​| 4.1-5.2 ​                  ​
-| :::                                         | :::                                       ​| ​ [[matlab_guide#​Real and Imaginary Command| Real and Imaginary Command]] ​                                                    | :::                  ​+| [[ecen_370_assignments#​Homework 10|HW 10]]  |Central Limit Theorem ​    |   ​Review ​                                                                                                                    | 5.3-6.1 ​      |
-| [[ecen_370_assignments#​Homework 10|HW 10]]  | Nat/Step of series RLC. Sinusoidal sources|   ​Review ​                                                                                                                    | 5.3-6.1 ​      |+
  
 === Homework 1 === === Homework 1 ===
Line 31: Line 30:
 in a graph in a graph
  
-Syntax: load(sprintf('​sequence%u.mat',​ k));+Starter: load(sprintf('​sequence%u.mat',​ k));, put inside a for loop of variable k (k replaces the %u in the name)
  
 Functions to Learn: load(); sprintf(); bar(); ​ Functions to Learn: load(); sprintf(); bar(); ​
Line 52: Line 51:
 sequences you suspect are fraudulent. sequences you suspect are fraudulent.
 </​file>​ </​file>​
 +==Files==
 {{::​hw2_matlab_example.m|}} {{::​hw2_matlab_example.m|}}
  
 {{::​coin_flip_data.zip|}} {{::​coin_flip_data.zip|}}
  
 +<ifauth @admin,​@370ta>​
 ==Solution== ==Solution==
 {{::​homework_2.m|}} {{::​homework_2.m|}}
  
 {{::​solution_graph.png?​200|}} {{::​solution_graph.png?​200|}}
 +</​ifauth>​
  
 === Homework 3 === === Homework 3 ===
Line 66: Line 67:
 <​file>​ <​file>​
  
-Objective: Understand the Random variables offered in matlab ​and how to plot them.+Objective: Understand the Random variables offered in Matlab ​and how to plot them.
  
-Syntax: x_vector = random('​Binomial',​ n, p, [1, trials]);+Starter: x_vector = random('​Binomial',​ n, p, [1, trials]);
  
 Functions to learn: var(), xlabel(), ylabel(), title() Functions to learn: var(), xlabel(), ylabel(), title()
Line 98: Line 99:
 with the probability mass function you computed analytically?​ with the probability mass function you computed analytically?​
 </​file>​ </​file>​
 +==Files==
 {{::​hw3_matlab_example.m|}} {{::​hw3_matlab_example.m|}}
  
 +<ifauth @admin,​@370ta>​
 ==Solution== ==Solution==
 {{::​homework_3.m|}} {{::​homework_3.m|}}
Line 107: Line 109:
  
 {{::​screenshot_from_2015-06-09_19_06_44.png?​200|}} {{::​screenshot_from_2015-06-09_19_06_44.png?​200|}}
-  ​+</​ifauth>  ​
  
 === Homework 4 === === Homework 4 ===
Line 115: Line 117:
 Objective: Learn to plot a joint PMF Objective: Learn to plot a joint PMF
  
-Syntax: Refer to HW4_prob_example.m+Starter: Refer to HW4_prob_example.m
  
 Functions to Learn: none Functions to Learn: none
Line 157: Line 159:
  
 </​file>​ </​file>​
 +==Files==
 {{::​simulate_joint_pmf.m|}} {{::​simulate_joint_pmf.m|}}
  
Line 163: Line 166:
 {{:​burgerfry.zip|}} {{:​burgerfry.zip|}}
  
 +<ifauth @admin,​@370ta>​
 ==Solution== ==Solution==
 {{::​hw_4.m|}} {{::​hw_4.m|}}
Line 171: Line 175:
  
 {{:​capture_2.png?​200|}} {{:​capture_2.png?​200|}}
 +</​ifauth>​
  
 === Homework 5 === === Homework 5 ===
Line 179: Line 183:
 Objective: Simulate Joint Random Variables Objective: Simulate Joint Random Variables
  
-Syntax: P = zeros(2,2);+Starter: P = zeros(2,2);
  
 Functions to Learn: none Functions to Learn: none
Line 228: Line 232:
 </​file>​ </​file>​
  
 +<ifauth @admin,​@370ta>​
 ==Solution== ==Solution==
 {{::​hw5.m|}} {{::​hw5.m|}}
 +</​ifauth>​
  
 === Homework 6 === === Homework 6 ===
Line 235: Line 241:
  
 <​file>​ <​file>​
-Objective: ​+Objective: ​To simulate a 2D uniform random variable and obtain its PDF
  
-Syntax:+StarterRefer to continuous_sim_commented.m
  
-Functions to Learn: ​+Functions to Learn: ​viscircle() may be helpful but not necessary
  
 Bertsekas Chapter 3, Problem 7  Bertsekas Chapter 3, Problem 7 
-  An example of this type of problem is in the file continuous_sim_commented.m. 
   One way to do this is to simulate a uniform distribution over a circle of radius 1 and then    One way to do this is to simulate a uniform distribution over a circle of radius 1 and then 
   compute the distance to each point:   compute the distance to each point:
Line 261: Line 266:
   histogram plot. It should look like the histogram for an exponential random variable!   histogram plot. It should look like the histogram for an exponential random variable!
 </​file>​ </​file>​
 +==Files==
 +{{::​continuous_sim_commented.m|}}
 +
 +<ifauth @admin>
 +==Solution==
 +{{::​homework_6_graph_0.png?​200|}}
 +
 +{{::​capture_0.png?​200|}}
 +</​ifauth>​
  
 === Homework 7 === === Homework 7 ===
Line 266: Line 280:
  
 <​file>​ <​file>​
 +Objective: To simulate a 2D uniform random variable and obtain its marginal/​conditional PDF
 +
 +Starters: none
 +
 +Functions to Learn: line()
 +
 Chapter 3, Problem 23  Chapter 3, Problem 23 
-  From the previous homework assignment, you should be able to define a triangle and then create ​a +  From the previous homework assignment, you should be able to define a triangle and then create  
-  uniform distribution within that triangle.+  ​uniform distribution within that triangle.
    a) Turn in a plot of your triangle with your vertices at (0,0), (0,1), and (1,0).    a) Turn in a plot of your triangle with your vertices at (0,0), (0,1), and (1,0).
    b) Plot an estimate of the marginal PDF of Y (essentially you can just examine the Ys). Show     b) Plot an estimate of the marginal PDF of Y (essentially you can just examine the Ys). Show 
       that this is the same as determined analytically.       that this is the same as determined analytically.
-   c) Plot an estimate of the conditional PDF of X given Y = ½. (To do this, you can select points ​+   c) Plot an estimate of the conditional PDF of X given Y = ½. (To do this, you can select points
       that are +/- some small distance from Y = ½).       that are +/- some small distance from Y = ½).
    d) Compute E[X] from simulation.    d) Compute E[X] from simulation.
Line 282: Line 302:
    c) Find E[Y] from simulation.    c) Find E[Y] from simulation.
 </​file>​ </​file>​
 +
 +<ifauth @admin,​@370ta>​
 +==Solution==
 +{{::​homework_7_graph.png?​200|}}
 +</​ifauth>​
  
 === Homework 8 === === Homework 8 ===
Line 287: Line 312:
  
 <​file>​ <​file>​
 +
 +Objective: To calculate sums and differences of R.V.s   Plot the CDF
 +
 +Starter: random('​type',​ mean, rows, columns);
 +
 +Functions to Learn: random()
 +
 This will show you how to simulate derived distributions. The file hw8.m on the website will show  This will show you how to simulate derived distributions. The file hw8.m on the website will show 
 you an example of appropriate graphs. Use 10,000 points for each of these problems. Turn in your  you an example of appropriate graphs. Use 10,000 points for each of these problems. Turn in your 
Line 312: Line 344:
    d) Compare your plot with the analytic solution you derived above    d) Compare your plot with the analytic solution you derived above
 </​file>​ </​file>​
 +==Files==
 +{{::​hw8.m|}}
 +
 +<ifauth @admin,​@370ta>​
 +==Solution==
 +{{::​chapter4_problem1.m|}}
 +
 +{{:​chapter4_problem5.m|}}
 +
 +{{:​chapter4_problem8.m|}}
 +
 +{{:​chapter_4_probl_1_graph.png?​200|}}
 +
 +{{:​chapter_4_problem_5_graph.png?​200|}}
 +
 +{{:​chapter_4_problem_8_graph.png?​200|}}
 +</​ifauth>​
  
 === Homework 9 === === Homework 9 ===
Line 317: Line 366:
  
 <​file>​ <​file>​
 +Objective: To find correlation between statistical data and understand what correlation means
 +
 +Starter: rho = corr(X, Y); 
 +
 +Functions to Learn: corr()
 +
 I have taken the following from the CMU DASL statistics website: I have taken the following from the CMU DASL statistics website:
 http://​lib.stat.cmu.edu/​DASL/​Data_les/​carmpgdat.html http://​lib.stat.cmu.edu/​DASL/​Data_les/​carmpgdat.html
Line 357: Line 412:
    d) Do the simulated values you computed in part (b) match the values in part (a)?    d) Do the simulated values you computed in part (b) match the values in part (a)?
 </​file>​ </​file>​
 +
 +<ifauth @admin,​@370ta>​
 +==Solution==
 +
 +</​ifauth>​
  
 === Homework 10 === === Homework 10 ===
Line 362: Line 422:
  
 <​file>​ <​file>​
 +
 +Objective: To calculate the sum of R.V. and prove that their output is Gaussian
 +
 +Starter: Refer to page 182 in the book
 +
 +Functions to Learn: none
 +
 Viewing the Central Limit Theorem: Viewing the Central Limit Theorem:
 Perform the following for N variables = 1,​2,​3,​5,​10,​100. Perform the following for N variables = 1,​2,​3,​5,​10,​100.
Line 367: Line 434:
 Let Y = X1 + . . . + XN variables. ​ For each different case of N variables, Let Y = X1 + . . . + XN variables. ​ For each different case of N variables,
    a) Find the mean and standard deviation of Y.    a) Find the mean and standard deviation of Y.
-   b) Simulate Y by generating 10,000 points of Y.  Plot the estimate of the PDF by dividing the raw  +   b) Simulate Y by generating 10,000 points of Y.  Plot the estimate of the PDF by dividing the  
-      histogram by both the total number of points (estimate of probability per interval) and by the  +      ​raw histogram by both the total number of points (estimate of probability per interval) and 
-      length of each interval (estimate of probability density per interval). +      ​by the length of each interval (estimate of probability density per interval). 
-   c) On the same graph as the histogram (use the “hold on” and “hold ​of” commands), plot a Gaussian ​ +   c) On the same graph as the histogram (use the “hold on” and “hold ​off” commands), plot a 
-      (normal) random variable with the mean and standard deviation for Y.+      ​Gaussian ​(normal) random variable with the mean and standard deviation for Y.
    d) Compare the plots obtained in part b) and part c).    d) Compare the plots obtained in part b) and part c).
    e) Do the means and standard deviations agree with what you found in part a)?    e) Do the means and standard deviations agree with what you found in part a)?
 </​file>​ </​file>​
 +
 +<ifauth @admin,​@370ta>​
 +==Solution==
 +{{::​graph_hw10.png?​200|}}
 +</​ifauth>​
ecen_370_assignments.1435082145.txt.gz · Last modified: 2015/06/23 11:55 by perry